

Reg. N	١o.	:	 -

Name:

IV Semester M.Sc. Degree (C.B.S.S. – Supple./Imp.) Examination, April 2025 (2021 and 2022 Admissions) MATHEMATICS MAT4C16: Differential Geometry

Time: 3 Hours Max. Marks: 80

PART – A

Answer any four questions. Each question carries 4 marks:

 $(4 \times 4 = 16)$

- 1. Show that the graph of a function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 2. Define gradient vector field. Find the gradient vector field of the function $f(x_1,x_2)=x_1^2+2x_2^2,\,x_1,x_2\in\mathbb{R}$.
- 3. Show that SL(2) is a 3-surface in \mathbb{R}^4 .
- 4. Define differential 1-form. Give an example.
- 5. Find the length of the parametrized curve $\alpha: [0,2] \to \mathbb{R}^2$ defined by $\alpha(t) = (t^2, t^3)$.
- 6. Obtain the torus as a parametrized surface in \mathbb{R}^3 .

PART + B

Answer any four questions without omitting any Unit. Each question carries

16 marks : (4×16=64)

Unit - I

- 7. a) Prove that a connected n-surface has exactly 2 orientations.
 - b) Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f and let c = f(p). Then prove that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $\left[\nabla f(p)\right]^{\perp}$.

K25P 1136

-2-

- 8. a) State and prove Lagrange's multiplier theorem.
 - b) Show that the surface of revolution is a 2-surface.
 - c) Show that the maximum and minimum of the function $g(x_1,\,x_2)=\,ax_1^2+2bx_1x_2+cx_2^2,\ a,b,c\in\mathbb{R}\ \text{on the unit circle}\ x_1^2+x_2^2=1\ \text{are}$ the eigenvalues of the matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}.$
- a) Let X be the vector field defined by X(x₁, x₂) = (x₁, x₂, -x₂, x₁). Find the integral curve of X passing through (1, 0).
 - b) Let S be an n-surface in \mathbb{R}^{n+1} , let \mathbb{X} be a smooth tangent vector field on S and let $p \in S$. Then prove that there exist an open interval I containing 0 and a parametrized curve $\alpha:I \to S$ such that (i) α (0) = p, (ii) $\dot{\alpha}$ (t) = \mathbb{X} (α (t)), (iii) If $\beta:\tilde{I} \to U$ is any other integral curve of \mathbb{X} with β (0) = p then $\tilde{I} \subset I$ and β (t) = α (t) \forall t $\in \tilde{I}$.

Unit - II

- 10. a) Sketch the spherical image of the hyperbola $x_1^2 x_2^2 = 4$, $x_1 > 0$.
 - b) Show that for each pair of orthogonal unit vectors $\{e_1, e_2\}$ in \mathbb{R}^3 , $\alpha(t) = \cos ate_1 + \sin ate_2$ is a geodesic on the unit sphere.
 - c) Compute $\nabla_{v} f$, given that $f(x_1, x_2) = 2x_1^2 + 3x_2^2$ at v = (1, 0, 2, 1).
- 11. a) Let S be an n-surface in \mathbb{R}^3 , let p, q \in S and let α be a piecewise smooth parametrized curve from p to q. Prove that the parallel transport $P_{\alpha}: S_p \to S_q$ along α is a vector space isomorphism which preserves dot product.
 - b) Let S be a 2–surface in \mathbb{R}^3 and let $\alpha:I\to S$ be a geodesic on S with $\dot{\alpha}\neq 0$. Then prove that a vector field \mathbb{X} tangent to S along α is parallel along α if and only if both norm of \mathbb{X} and the angle between \mathbb{X} and $\dot{\alpha}$ are constants along α .
- 12. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then prove that the Gauss map maps S onto the unit sphere S^n .

Unit - III

- 13. a) Let C be a connected oriented plane curve and let $\beta: I \to C$ be a unit speed global parametrization of C. Then prove that β is either one to one or periodic. Also prove that β is periodic if and only if C is compact.
 - b) Let $\alpha: I \to \mathbb{R}^{n+1}$ be a parametrized curve and if $\beta: I \to \mathbb{R}^{n+1}$ is a reparametrization of α then prove that $I(\alpha) = I(\beta)$.
- 14. a) Find the principal curvatures at p and the principal curvature directions at p of the hyperboloid $-x_1^2 + x_2^2 + x_3^2 = 1$ in \mathbb{R}^3 at p = (0, 0, 1).
 - b) Find the Gaussian curvature of the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$, a, b, c all $\neq 0$ oriented by its outward normal.
- 15. a) State and prove the inverse function theorem for n-surfaces.
 - b) Let S be an n-surface in \mathbb{R}^{n+1} and let $f:S\to\mathbb{R}^k$. Then prove that f is smooth if and only if $f\circ \phi:U\to\mathbb{R}^k$ is smooth for each local parametrization $\phi:U\to S$.

